Design for Six Sigma

The University of Michigan’s College of Engineering was founded in 1853. Today, Michigan Engineering and its academic departments rank in the top ten in their respective areas (U.S. News and World Report). The faculty’s ongoing research and industry consultation in engineering contribute to Michigan’s strength and impact on professional development. Michigan Engineering’s research expenditures for fiscal 2014 totaled $217.9 million, placing it in the forefront of collegiate engineering research in the U.S.

Integrative Systems + Design (ISD) (formerly known as Interdisciplinary Professional Programs), a division of Michigan Engineering, offers credit courses to students on campus and at locations around the world. Recognized as a global leader in online education, ISD provides lifelong learning to technical professionals, and has served more than 100,000 with intensive short courses, conferences, professional certifications, and online advanced degree and certification programs.

ISD responds to the needs of industry, healthcare, government, the military, and non-profit organizations with specialized education programs.

For more information about ISD, visit isd.engin.umich.edu

Questions? Email meonline@umich.edu

Who Should Enroll

These courses are aimed primarily at Product Designers, Manufacturing Engineers, and Project Managers working in new product development. To enroll in the DFSS Level 2 course, we recommend participants have applied statistical analysis training (e.g., Six Sigma Black Belt, Certified Quality Engineer, or equivalent).

Program Overview

Design for Six Sigma (DFSS) is an evolving advanced practice that can be applied to all kinds of products, services, and system design to take process improvement to the next level. It is estimated that 70–80% of quality problems originate in product definition and design. One of the main themes of Design for Six Sigma (DFSS) is to move from reactive to predictive by designing quality into the product from the start, instead of waiting until production issues during production.

Who Should Enroll

These courses are aimed primarily at Product Designers, Manufacturing Engineers, and Project Managers working in new product development. To enroll in the DFSS Level 2 course, we recommend participants have applied statistical analysis training (e.g., Six Sigma Black Belt, Certified Quality Engineer, or equivalent).

About Michigan Engineering and Integrative Systems + Design

The University of Michigan is committed to a policy of nondiscrimination and equal opportunity for all persons regardless of race, sex, color, religion, creed, national origin or ancestry, age, marital status, sexual orientation, gender identity, gender expression, disability, or Vietnam-era veteran status in employment, educational programs and activities, and admissions. Inquiries or complaints may be addressed to the Senior Director for Institutional Equity and Title IX/Section 504 Coordinator, Office of Institutional Equity, 222 Administration Building, Ann Arbor, MI 48109-2103, or by phone at (734) 763-0235. For other University of Michigan information call (734) 764-1817.

© 2014 The Regents of the University of Michigan 102214

Learn more and register for courses at: isd.engin.umich.edu/design4sixsigma
Take Process Improvement to the Next Level

An Interactive Online Experience
In addition to viewing lecture modules and completing homework exercises you can participate in student discussions and relevant case studies to make your learning experience come alive.

Get a Free Copy of QE Tools Software (Level 1 only)
QE Tools is a highly functional, user friendly, Excel-based add-in tool designed specifically for Six Sigma. You can use QE Tools to apply the various problem-solving tools and statistical analysis methods for your Design for Six Sigma project. This is an Excel tool that will make your job much easier!

Two Skill Levels
The Level 1, DFSS Green Belt focuses on the core concepts and methods of applying the IDDOV methodology within the new product development process. Level 2, DFSS Black Belt, explores more advanced statistical analysis techniques in the areas of design of experiments, Taguchi methods, robustness, optimization, and reliability analysis.

Level 1 DFSS Green Belt Modules
- Course Introduction: New Product Development Challenges
- IDDOV Methodology/Identifying Projects
- Defining Customer Requirements: Voice of the Customer
- Survey Analysis Methods
- Developing Functional Requirements/FAST Diagrams
- House of Quality
- Benchmarking
- Design Concept Generation
- Creativity and Innovation Tools
- TRIZ Overview
- Design Concept Selection: Design Scorecards, Pugh Matrix
- Design Failure Mode and Effects Analysis (DFMEA)
- Design Issue Counter-measures, DF Analysis, Axiomatic Design
- Design Optimization: Transfer Functions, P-Diagrams, Robustness
- Two Group Hypothesis Tests: T-test, F-test, 2 Proportion Tests
- One Way ANOVA Tests
- Two Way ANOVA Tests
- Problem Solving Session: Hypothesis Tests
- Tolerance Analysis: Statistical Tolerance Methods
- Tolerance Simulation: Development and Allocation
- Problem Solving Session: Tolerance Simulation
- Product Design Verification and Validation
- Process Validation
- Course Summary

Level 2 DFSS Black Belt Themes
- Course Introduction: New Product Development Challenges
- Conventional Design of Experiments
- Taguchi Design of Experiment (Static and Dynamic)
- Response Surface Methodology
- Multi-Response Analysis and Desirability
- Central Composite Designed Experiments
- Reliability Analysis/System Allocation

Program Components
Program Details
Register Today!
Visit either of our Design for Six Sigma program websites: isd.engin.umich.edu/SixSigma, send an email to MEonline@umich.edu or call (734) 647-7200.

Program Prerequisites
Level 1: basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).
Level 2: participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Certificates
Green Belt professional certification requires successful completion of online tests and exercises and a pre-approved Green Belt project.
Black Belt professional certification requires successful completion of Design for Six Sigma Level 1, online tests and exercises, and Black Belt certification exam.

Visit our website at isd.engin.umich.edu to learn more.

Customized Programs
Our professors and industry experts are available to collaborate with you by tailoring programs to meet your specific organizational needs and presenting them at a location of your choice.
For more information, contact us at (734) 647-7200 or MEonline@umich.edu.

Degrees of Success
Whatever your professional dreams, you’ll be a step ahead with exceptional graduate degree programs offered through ISD. These programs are immediately useful and relevant and some can be completed entirely online.

Program Prerequisites
Level 1: basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).
Level 2: participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Components
Level 1 DFSS Green Belt Modules
- Course Introduction: New Product Development Challenges
- IDDOV Methodology/Identifying Projects
- Defining Customer Requirements: Voice of the Customer
- Survey Analysis Methods
- Developing Functional Requirements/FAST Diagrams
- House of Quality
- Benchmarking
- Design Concept Generation
- Creativity and Innovation Tools
- TRIZ Overview
- Design Concept Selection: Design Scorecards, Pugh Matrix
- Design Failure Mode and Effects Analysis (DFMEA)
- Design Issue Counter-measures, DF Analysis, Axiomatic Design
- Design Optimization: Transfer Functions, P-Diagrams, Robustness
- Two Group Hypothesis Tests: T-test, F-test, 2 Proportion Tests
- One Way ANOVA Tests
- Two Way ANOVA Tests
- Problem Solving Session: Hypothesis Tests
- Tolerance Analysis: Statistical Tolerance Methods
- Tolerance Simulation: Development and Allocation
- Problem Solving Session: Tolerance Simulation
- Product Design Verification and Validation
- Process Validation
- Course Summary

Level 2 DFSS Black Belt Themes
- Course Introduction: New Product Development Challenges
- Conventional Design of Experiments
- Taguchi Design of Experiment (Static and Dynamic)
- Response Surface Methodology
- Multi-Response Analysis and Desirability
- Central Composite Designed Experiments
- Reliability Analysis/System Allocation

Instructors
Pat Hammell, Ph.D.
Lead faculty for live and online Six Sigma programs and lecturer in Integrative Systems + Design.

Don Lynch, Ph.D.
A Lean Six Sigma Corporate Master Black Belt for SKF, Inc. He holds a Ph.D. in Mechanical Engineering as well as an MBA.
Design for Six Sigma

The University of Michigan’s College of Engineering was founded in 1853. Today, Michigan Engineering and its academic departments rank in the top ten in their respective areas (U.S. News and World Report). The faculty’s ongoing research and industry consultation in engineering contribute to Michigan’s strength and impact on professional development. Michigan Engineering’s research expenditures for fiscal 2014 totaled $217.9 million, placing it in the forefront of collegiate engineering research in the U.S.

Integrative Systems + Design (ISD) (formerly known as Interdisciplinary Professional Programs), a division of Michigan Engineering, offers credit courses to students on campus and at locations around the world. Recognized as a global leader in online education in addition to offering on campus programs, ISD provides lifelong learning to technical professionals, and has served more than 100,000 with intensive short courses, conferences, professional certifications, and online advanced degree and certification programs.

ISD responds to the needs of industry, healthcare, government, the military, and non-profit organizations with specialized education programs.

For more information about ISD, visit isd.engin.umich.edu

Questions? Email meonline@umich.edu

About Michigan Engineering and Integrative Systems + Design

The Regents of the University of Michigan, as an equal opportunity/affirmative action employer, complies with all applicable federal and state laws regarding nondiscrimination and affirmative action, including Title III of the Education Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973. The University of Michigan is committed to a policy of nondiscrimination and equal opportunity for all persons regardless of sex, color, religion, creed, national origin or ancestry, age, marital status, disability, or Vietnam era veteran status in employment, educational programs and activities, and admissions. Inquiries of complaints may be addressed to the Senior Director for Institutional Equity and Title IX/Section 504 Coordinator, Office of Institutional Equity, 222 Administration Service Building, Ann Arbor, MI 48109-1432, (734) 764-1817, or to other University of Michigan information call (734) 764-1817.

© 2014 The Regents of the University of Michigan 102214

© 2014 The Regents of the University of Michigan 102214

Online, Anytime, Anyplace

Lecture slides, a dynamic table of contents, and streaming video are part of the user experience in online distance education from ISD. All lectures, exercises, and course materials are online and students can interact with instructors.

Program Overview

Design for Six Sigma (DFSS) is an evolving advanced practice that can be applied to all kinds of products, services, and system design to take process improvement to the next level. It is estimated that 70–80% of quality problems originate in product definition and design. One of the main themes of Design for Six Sigma (DFSS) is to move from reactive to predictive by designing quality into the product from the start, instead of waiting until production issues during production. In addition, DFSS can be an enabler for new product development.

Who Should Enroll

These courses are aimed primarily at Product Designers, Manufacturing Engineers, and Project Managers working in new product development. To enroll in the DFSS Level 2 course, we recommend participants have applied statistical analysis training (e.g., Six Sigma Black Belt, Certified Quality Engineer, or equivalent).

For more information about ISD, visit isd.engin.umich.edu

Questions? Email meonline@umich.edu

Learn more and register for courses at: isd.engin.umich.edu/design4sixsigma
Take Process Improvement to the Next Level

An Interactive Online Experience

In addition to viewing lecture modules and completing homework exercises you can participate in student discussions and relevant case studies to make your learning experience come alive.

Get a Free Copy of QE Tools Software (Level 1 only)

QE Tools is a highly functional, user friendly, Excel-based add-in tool designed specifically for Six Sigma. You can use QE Tools to apply the various problem-solving tools and statistical analysis methods for your Design for Six Sigma project. This is an Excel tool that will make your job much easier!

Two Skill Levels

The Level 1, DFSS Green Belt focuses on the core concepts and methods of applying the IDDOV methodology within the new product development process. Level 2, DFSS Black Belt, explores more advanced statistical analysis techniques in the areas of design of experiments, Taguchi methods, robustness, optimization, and reliability analysis.

Program Components

Level 1 DFSS Green Belt Modules

- Course Introduction: New Product Development Challenges
- IDDOV Methodology/Identifying Projects
- Defining Customer Requirements: Voice of the Customer
- Survey Analysis Methods
- Developing Functional Requirements/FAST Diagrams
- House of Quality
- Benchmarking
- Design Concept Generation
- Creativity and Innovation Tools
- TRIZ Overview
- Design Concept Selection: Design Scorecards, Pugh Matrix
- Design Failure Mode and Effects Analysis (DFMEA)
- Design Issue Counter-measures, DFX Analysis, Axiomatic Design
- Design Optimization: Transfer Functions, P-Diagrams, and Robustness
- Two Group Hypothesis Tests: T-test, F-test, 2 Proportion Tests
- One Way ANOVA Tests
- Two Way ANOVA Tests
- Problem Solving Session: Hypothesis Tests
- Tolerance Analysis: Statistical Tolerance Methods
- Tolerance Simulation: Development and Allocation
- Problem Solving Session: Tolerance Simulation
- Product Design Verification and Validation
- Process Validation
- Course Summary

Level 2 DFSS Black Belt Themes

- Course Introduction: New Product Development Challenges
- Conventional Design of Experiments
- Taguchi Design of Experiment (Static and Dynamic)
- Response Surface Methodology
- Multi-Response Analysis and Desirability
- Central Composite Designed Experiments
- Reliability Analysis/System Allocation

Instructors

Pat Hammett, Ph.D.
Lead faculty for live and online Six Sigma programs and lecturer in Integrative Systems + Design.

Don Lynch, Ph.D.
A Lean Six Sigma Corporate Master Black Belt for SKF, Inc. He holds a Ph.D. in Mechanical Engineering as well as an MBA.

Program Details

Register Today!

Visit either of our Design for Six Sigma program websites: isd.engin.umich.edu/SixSigma, send an email to MEonline@umich.edu or call (734) 647-7200.

Program Prerequisites

Level 1: basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2: participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Certificates

Green Belt professional certification requires successful completion of online tests and exercises and a pre-approved Green Belt project.

Black Belt professional certification requires successful completion of Design for Six Sigma Level 1, online tests and exercises, and Black Belt certification exam.

Degrees of Success

Whatever your professional dreams, you’ll be a step ahead with exceptional graduate degree programs offered through ISD. These programs are immediately useful and relevant and some can be completed entirely online.

Visit our website at isd.engin.umich.edu to learn more.

Customized Programs

Our professors and industry experts are available to collaborate with you by tailoring programs to meet your specific organizational needs and presenting them at a location of your choice.

For more information, contact us at (734) 647-7200 or MEonline@umich.edu.
Take Process Improvement to the Next Level

Instructors

Pat Hammett, Ph.D.
Lead faculty for live and online Six Sigma programs and lecturer in Integrative Systems + Design.

Don Lynch, Ph.D.
A Lean Six Sigma Corporate Master Black Belt for SKF Inc. He holds a Ph.D. in Mechanical Engineering as well as an MBA.

Course Introduction: New Product Development Challenges

- Conventional Design of Experiments
- Taguchi Design of Experiment (Static and Dynamic)

Level 2 DFSS Black Belt Themes

- Response Surface Methodology
- Multi-Response Analysis and Desirability
- Central Composite Designed Experiments
- Reliability Analysis/System Allocation

Program Components

Level 1 DFSS Green Belt Modules

- Course Introduction: New Product Development Challenges
- IDDOV Methodology/Identifying Projects
- Defining Customer Requirements: Voice of the Customer
- Survey Analysis Methods
- Developing Functional Requirements/FAST Diagrams
- House of Quality
- Benchmarking
- Design Concept Generation
- Creativity and Innovation Tools
- TRIZ Overview
- Design Concept Selection: Design Scorecards, Pugh Matrix
- Design Failure Mode and Effects Analysis (DFMEA)
- Design Issue Counter-measures, DFX Analysis, Axiomatic Design
- Design Optimization: Transfer Functions, P-Diagrams, and Robustness
- Two Group Hypothesis Tests: T-test, F-test, 2 Proportion Tests
- One Way ANOVA Tests
- Two Way ANOVA Tests
- Problem Solving Session: Hypothesis Testing
- Tolerance Analysis: Statistical Tolerance Methods
- Tolerance Simulation: Development and Allocation
- Problem Solving Session: Tolerance Simulation
- Product Design Verification and Validation
- Process Validation
- Course Summary

Level 2 DFSS Black Belt Themes

- Conventional Design of Experiments
- Taguchi Design of Experiment (Static and Dynamic)
- Design Optimization: Transfer Functions, P-Diagrams, and Robustness
- Two Group Hypothesis Tests: T-test, F-test, 2 Proportion Tests
- One Way ANOVA Tests
- Two Way ANOVA Tests
- Problem Solving Session: Hypothesis Testing
- Tolerance Analysis: Statistical Tolerance Methods
- Tolerance Simulation: Development and Allocation
- Problem Solving Session: Tolerance Simulation
- Product Design Verification and Validation
- Process Validation
- Course Summary

Problem Details

Register Today!
Visit either of our Design for Six Sigma program websites: isd.engin.umich.edu/SixSigma, send an email to MEonline@umich.edu or call (734) 647-7200.

Program Prerequisites

Level 1: basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2: participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

An Interactive Online Experience
In addition to viewing lecture modules and completing homework exercises you can participate in student discussions and relevant case studies to make your learning experience come alive.

Two Skill Levels
The Level 1, DFSS Green Belt focuses on the core concepts and methods of applying the IDDOV methodology within the new product development process. Level 2, DFSS Black Belt, explores more advanced statistical analysis techniques in the areas of design of experiments, Taguchi methods, robustness, optimization, and reliability analysis.

Get a Free Copy of QE Tools Software (Level 1 only)
QE Tools is a highly functional, user friendly, Excel-based add-in tool designed specifically for Six Sigma. You can use QE Tools to apply the various problem-solving tools and statistical analysis methods for your Design for Six Sigma project. This is an Excel tool that will make your job much easier!

Customized Programs
Our professors and industry experts are available to collaborate with you by tailoring programs to meet your specific organizational needs and presenting them at a location of your choice.

Degrees of Success
Whatever your professional dreams, you’ll be a step ahead with exceptional graduate degree programs offered through ISD. These programs are immediately useful and relevant and some can be completed entirely online.

Visit our website at isd.engin.umich.edu to learn more.

Certificates
Green Belt professional certification requires successful completion of online tests and exercises and a pre-approved Green Belt project.

Black Belt professional certification requires successful completion of Design for Six Sigma Level 1, online tests and exercises, and Black Belt certification exam.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.

Program Prerequisites

Level 1:
- basic Microsoft Excel skills and an understanding of statistical analysis methods are recommended (e.g. Six Sigma Green Belt or equivalent).

Level 2:
- participants must have successfully completed our DFSS Level 1 course. In addition, this course requires the usage of Minitab® statistical software (or equivalent) and includes more advanced statistical analysis tools. Six Sigma Black Belt (or equivalent) is recommended.
Design for Six Sigma

Who Should Enroll
These courses are aimed primarily at Product Designers, Manufacturing Engineers, and Project Managers working in new product development. To enroll in the DFSS Level 2 course, we recommend participants have applied statistical analysis training (e.g., Six Sigma Black Belt, Certified Quality Engineer, or equivalent).

Who Should Enroll
These courses are aimed primarily at Product Designers, Manufacturing Engineers, and Project Managers working in new product development. To enroll in the DFSS Level 2 course, we recommend participants have applied statistical analysis training (e.g., Six Sigma Black Belt, Certified Quality Engineer, or equivalent).

Program Overview
Design for Six Sigma (DFSS) is an evolving advanced practice that can be applied to all kinds of products, services, and system design to take process improvement to the next level. It is estimated that 70–80% of quality problems originate in product definition and design. One of the main themes of Design for Six Sigma (DFSS) is to move from reactive to predictive by designing quality into the product from the start, instead of waiting until production to fix issues. In addition, DFSS can be an enabler for new product development.

The University of Michigan's College of Engineering was founded in 1853. Today, Michigan Engineering and its academic departments rank in the top ten in their respective areas (U.S. News and World Report). The faculty's ongoing research and industry consultation in engineering contribute to Michigan's strength and impact on professional development. Michigan Engineering's research expenditures for fiscal 2014 totaled $217.9 million, placing it in the forefront of collegiate engineering research in the U.S.

Integrative Systems + Design (ISD) (formerly known as Interdisciplinary Professional Programs), a division of Michigan Engineering, offers credit courses to students on campus and at locations around the world. Recognized as a global leader in online education in addition to offering on-campus programs, ISD provides lifelong learning to technical professionals, and has served more than 100,000 with intensive short courses, conferences, professional certifications, and online advanced degree and certification programs.

ISD responds to the needs of industry, healthcare, government, the military, and non-profit organizations with specialized education programs.

For more information about ISD, visit isd.engin.umich.edu

Questions? Email meonline@umich.edu

Learn more and register for courses at: isd.engin.umich.edu/design4sixsigma

The Regents of the University of Michigan

Mark S. Schlissel (ex officio)
Katherine E. White, Ann Arbor
Andrew C. Richner, Grosse Pointe Park
Andrea Fischer Newman, Ann Arbor
Denise Ilitch, Bingham Farms
Shauna Ryder Diggs, Grosse Pointe
Laurence B. Deitch, Bloomfield Hills
Julia Donovan Darlow, Ann Arbor
Mark J. Bernstein, Ann Arbor
The Regents of the University of Michigan

The University of Michigan, as an equal opportunity/affirmative action employer, complies with all applicable federal and state laws regarding nondiscrimination and affirmative action, including Title II of the Education Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973. The University of Michigan is committed to a policy of nondiscrimination and equal opportunity for all persons regardless of race, color, religion, national origin, age, sex, marital status, disability, or Vietnam-era veteran status in employment, educational programs and activities, and admissions. Inquiries or complaints may be addressed to the Senior Director for Institutional Equity and Title IX/Section 504 Coordinator, Office of Institutional Equity, 100 E.呲); 734-764-2300. For other University of Michigan information call (734) 764-1817.